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A > B > CRule for breaking ties: Alternatives
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Social Choice Function:

 Compute the alternative that is

top-ranked by the majority

Strategic issues!
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Mechanism Design

Social Choice Theory is non-strategic

In practice, agents declare their preferences

They are self interested

They might not reveal their true preferences

We want to find optimal outcomes w.r.t. true preferences

Optimizing w.r.t. the declared preferences might not

achieve the goal
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Basic Concepts (1/2)

Each agent is associated with a type

Each agent has a strategy

private knowledge, preferences,…

C  >  B  >  A

the action manifested

C  >  B  >  A



Basic Concepts (2/2)

Consider the vector of the joint strategies

Each agent    gets some utility

(A, B, C)

C  >  B  >  A

(A, B, C)

A

A

3       2       1

1



Game Theory (by Example)

Consider the utility function of agent 

Let us reason on the case where

selects A

selects B

A  B  A A

C  >  B  >  A
3       2       1

1

A  B  B B

A  B  C A 1

2will select B



Game Theory (by Example)

A  >  C  >  B

B  >  A  >  C 

C  >  B  >  A
2

3

1



Solution Concepts

A Nash equilbrium is a strategy profile

such that, for every agent    and for every , 

The strategies of the other agents are fixed…



Solution Concepts

A Nash equilbrium is a strategy profile

such that, for every agent    and for every , 

2 0
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John goes outBob
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John stays at home
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A Closer Look

To play a Nash equilibrium, 

every agent must have perfect information

rationality is common knowledge

all agents must select the same Nash equilibrium

2 0

0 1

out

John goes outBob

home

John stays at home

1 1

0 0

out

Bob goes outJohn

home

Bob stays at home

Dominant strategy



Dominant Strategies (by Example)

A  >  C  >  B

B  >  A  >  C 

C  >  B  >  A



Solution Concepts

A Nash equilbrium is a strategy profile

A strategy is dominant for agent    , if for every

such that, for every agent    and for every ,

and for every ,

Independently on the other agents…
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Social Choice Functions

A social choice function

given a type vector

selects an outcome

A  >  C  >  B

B  >  A  >  C 

C  >  B  >  A

type vector

A

Social Choice Function:

 Compute the alternative that is

top-ranked by the majority

 Break ties: A > B > C

outcome



Mechanism Design

Outcome Rule

Utility

strategy profile

outcome in 

Social Choice Function

equilibrium



Mechanism Design

Outcome Rule

Utility

strategy profile

outcome in 

Social Choice Function

equilibrium



Mechanism and Implementation

type vector 1 outcome 1 type vector 2 outcome 2

social choice function
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 For a given type vector, all startegy profiles are in principle admissible

A
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Mechanism and Implementation

type vector 1 type vector 2 outcome 2

social choice function

(A, A, A) (A, A, B) (A, B, A) (A, B, B) (C, C, C)

strategy profiles

 For a given type vector, all startegy profiles are in principle admissible

 An outcome rule is applied

 So, utilities can be computed and equilibria can be selected

A A CA B (3,3,2)

A
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Mechanism and Implementation

type vector 1 type vector 2

social choice function

(A, A, A) (A, A, B) (A, B, A) (A, B, B) (C, C, C)

strategy profiles

A A AA A

A C



Mechanism and Implementation

A mechanism is a tuple , where

for each agent   ,      is the set of available strategies

is an outcome rule that

given a strategy profile

selects an outcome

implements in dominant strategy the social choice function if, 

for each type vector ,

where is a dominant strategy.



Types VS Strategies

In a direct revelation mechanism, each strategy is

restricted to a declaration about the private type

C  >  B  >  A

type

strategy



Types VS Strategies

In a direct revelation mechanism, each strategy is

restricted to a declaration about the private type

Outcome Rule

true types

declared types

Utility



Types VS Strategies

Outcome Rule

true types

declared types

Utility

DEFINITION. A direct-revelation mechanism is strategy-proof (dominant-strategy

incentive-compatible) if truth-revelation is a dominant strategy for each agent.

If the mechanism implements a function , then = 



Revelation Principle

It is a central theoretical tool in mechanism design

[Gibbard, 1973]

[Green and Laffont, 1977]

[Mayerson, 1979]

THEOREM. If a social choice function can be implemented in dominant strategies,

then it can be implemented by a strategy-proof direct-revelation mechanism.

C  >  B  >  A

type

strategy



Impossibility Result

A social choice function is dictatorial if one agent 

always receives one of its most preferred alternatives



Impossibility Result

A social choice function is dictatorial if one agent 

always receives one of its most preferred alternatives

A preference relation is general when it defines a 

complete and transitive ordering over the alternatives



Impossibility Result

Very bad news...

[Gibbard, 1973] and [Satterthwaite, 1975] 

…, but must be interpreted with care

THEOREM. Assume general preferences, at least two agents, and at least three

optimal outcomes. A social choice function can be implemented in dominant

strategies if, and only if, it is dictatorial.

The result does not necessarily hold in restricted environments



Payments

A utility is quasi-linear if it has the following form

Monetary compensation to induce truthfulness

valuation function

cardinal preferences

payment by the agent



Payments

A utility is quasi-linear if it has the following form

Payments are defined by the mechanism

Monetary compensation to induce truthfulness

valuation function

cardinal preferences

payment by the agent



Direct Mechanisms with Payments

Social Choice Function

Utility

Actually, agents might directly declare their valuations



Direct Mechanisms with Payments

Social Choice Function =



Vickrey-Clarke-Groves (VCG) Mechanisms

Consider quasi-linear utilities:

Consider social choice functions that are efficient:

Given ,           maximizes the sum of the valuations

The mechanism selects the outcome maximizing

Payments are such that

Family of mechanisms (e.g., the value of the optimal outcome without the agent)



Vickrey-Clarke-Groves (VCG) Mechanisms

The mechanism selects the outcome maximizing

Payments are such that

Family of mechanisms (e.g., the value of the optimal outcome without the agent)

An auction with one item

We have bids: b1 > b2 >     > bn

Agent 1 receives the item

Agent 1 pays b2



Payment Rules (Again…)

Monetary compensation to induce truthfulness

 The algebraic sum of the monetary transfers is zero 

 In particular, mechanisms cannot run into deficit

Monetary compensation to induce fairness

 For instance, it is desirable that no agent envies the 

allocation of any another agent, or that

 The outcome is Pareto efficient, i.e., there is no 

different allocation such that every agent gets at 

least the same utility and one of them improves.



Fairness vs Efficiency

25 26

2526

Two optimal allocations

Is there any fair allocation?



(A Few…) Impossibility Results

Efficiency + Truthfulness + Budget Balance

Fairness + Truthfulness + Budget Balance

[Green, Laffont; 1977] 

[Hurwicz; 1975]

[Tadenuma, Thomson;1995]

[Alcalde, Barberà; 1994]

[Andersson, Svensson, Ehlers; 2010]

Allocation

Algorithm
MechanismAllocation

declarations

payments
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(A Few…) Impossibility Results

Allocation

Algorithm
MechanismAllocation

declarations

Efficiency + Truthfulness + Budget Balance

Fairness + Truthfulness + Budget Balance

payments



(A Few…) Impossibility Results

Verification on «selected» declarations

Allocation

Algorithm
MechanismAllocation

declarations

Verifier

Efficiency + Truthfulness + Budget Balance

Fairness + Truthfulness + Budget Balance

payments



Approaches to Verification



Approaches to Verification

[Green, Laffont; 1986]

[Nisan, Ronen; 2001]



Approaches to Verification

[Auletta, De Prisco, Ferrante, Krysta, Parlato, Penna, 

Persiano, Sorrentino, Ventre]



Approaches to Verification

[Auletta, De Prisco, Ferrante, Krysta, Parlato, Penna, 

Persiano, Sorrentino, Ventre]

[Caragiannis, Elkind, Szegedy, Yu;  2012]



Approaches to Verification

Punishments are 

used to enforce

truthfulness



Approaches to Verification

Punishments are 

used to enforce

truthfulness

Verification is performed via sensing

Hence, it is subject to errors; for instance, 
because of the limited precision of the 
measurement instruments. 

It might be problematic to decide whether an 
observed discrepancy between verified values 
and declared ones is due to a strategic 
behavior or to such sensing errors. 

[Greco, Scarcello; 2014]



Approaches to Verification

Verification is performed via sensing

Hence, it is subject to errors; for instance, 
because of the limited precision of the 
measurement instruments. 

It might be problematic to decide whether an 
observed discrepancy between verified values 
and declared ones is due to a strategic 
behavior or to such sensing errors. 

3 Verifier 3.01



Approaches to Verification (bis)

Agents might be uncertain of their private 

features; for instance, due to limited 

computational resources

There might be no strategic issues

3 Verifier 3.01



Approaches to Verification (ter)

Punishments enforce truthfulness

They might be disproportional to the harm 
done by misreporting

Inappropriate in real life situations in which 
uncertainty is inherent due to measurements 
errors or uncertain inputs.

3 Verifier 3.01

[Feige, Tennenholtz; 2011]

100.000EUR



Approaches to Verification

Punishments are 

used to enforce

truthfulness

The verifier returns a value. 



Approaches to Verification

Punishments are 

used to enforce

truthfulness

The verifier returns a value. But,…

no punishment

payments are always computed under the presumption of 
innocence, where incorrect declared values do not mean 
manipulation attempts by the agents

error tolerance

the consequences of errors in the declarations produce a 
linear “distorting effect” on the various properties of the 
mechanism



Payment Rules

Monetary compensation to induce truthfulness

 The algebraic sum of the monetary transfers is zero 

 In particular, mechanisms cannot run into deficit

Monetary compensation to induce fairness

 For instance, it is desirable that no agent envies the 

allocation of any another agent, or that

 The outcome is Pareto efficient, i.e., there is no 

different allocation such that every agent gets at 

least the same utility and one of them improves.



Payment Rules & Full Verification

Monetary compensation to induce truthfulness

 The algebraic sum of the monetary transfers is zero 

 In particular, mechanisms cannot run into deficit

Monetary compensation to induce fairness

 For instance, it is desirable that no agent envies the 

allocation of any another agent, or that

 The outcome is Pareto efficient, i.e., there is no 

different allocation such that every agent gets at 

least the same utility and one of them improves.
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The Model

Goods are indivisible and non-sharable

Constraints on the maximum number of goods to be allocated to each agent

Cardinal preferences: Utility functions
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The Model

Goods are indivisible and non-sharable

Constraints on the maximum number of goods to be allocated to each agent

Cardinal preferences: Utility functions

 Social Welfare

 Efficiency
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The Model

Goods are indivisible and non-sharable

Constraints on the maximum number of goods to be allocated to each agent

Cardinal preferences: Utility functions

 Social Welfare

 Efficiency
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Strategic Issues

Private Type

 Social Welfare

 Efficiency
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Strategic Issues

Private Type

 Social Welfare

 Efficiency



Strategic Issues: Example
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Strategic Issues: Example

 Social Welfare

 Efficiency

Before: 8+9=17

After: 9+7=16

1
7

3
8

1

1

9
4

3
69

7



Strategic Issues: Verification

1
7

3
8

1

1

9
4

3
69

7

We assume full-verification.
But, of course, we can verify only the goods that are selected.
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A Key Lemma

Consider an optimal allocation (w.r.t. some declared types)

Ignore the goods that are not allocated,

and hence that cannot be verified later…

Focus on an arbitrary coalition of agents

In this novel setting, compute an optimal allocation

 The allocation is also optimal for that coalition, even if all

goods were actually available



The Mechanism…



The Mechanism…

Allocated goods are considered only



The Mechanism…

Allocated goods are considered only

By the previous lemma, this is without loss of generality.

In fact, allocated goods are the only ones that we verify.



The Mechanism…

«Bonus and Compensation», 

by Nisan and Ronen (2001)

Allocated goods are considered only



The Mechanism…

«Bonus and Compensation», 

by Nisan and Ronen (2001)

Allocated goods are considered only

No punishments!



The Mechanism…

«Bonus and Compensation», 

by Nisan and Ronen (2001)

Allocated goods are considered only

 Truth-telling is a dominant strategy for each agent



The Mechanism…

«Bonus and Compensation», 

by Nisan and Ronen (2001)

Allocated goods are considered only

 Truth-telling is a dominant strategy for each agent

Does not depend on i

Is maximized when the declared type coincides 

with  the verified one



The Mechanism…

«Bonus and Compensation», 

by Nisan and Ronen (2001)

Allocated goods are considered only

 Truth-telling is a dominant strategy for each agent



Coalitional Games

Players form coalitions

Each coalition is associated with a worth

A total worth has to be distributed 

Solution Concepts characterize outcomes in terms of
Fairness

Stability



Coalitional Games: Shapley Value

Solution Concepts characterize outcomes in terms of
Fairness

Stability



Relevant Properties of the Shapley Value

Core Allocation
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The Mechanism

is the contribution of the coalition w.r.t. 

Each agent gets the Shapley value

Properties The resulting mechanism is «fair» and «buget balanced»
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The Mechanism

is the contribution of the coalition w.r.t. 

Each agent gets the Shapley value

Properties The resulting mechanism is «fair» and «buget balanced»

verified values (   )

selected products

and

The game is supermodular;

so the Shapley value is stable



Further Observations for Fairness

Let be an optimal allocation

Let be an allocation
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Let be an optimal allocation

Let be an allocation

(best allocation for the coalition with products in    )

As     is optimal, then         is in fact optimal even by 

considering all possible products as available 
≥



Further Observations for Fairness

Let be an optimal allocation

Let be an allocation

(best allocation for the coalition with products in    )

As     is optimal, then         is in fact optimal even by 

considering all possible products as available 
≥

By the monotonicity of the Shapley value, ≥



Further Observations for Fairness

Let be an optimal allocation

Let be an allocation

 Optimal allocations are always preferred by ALL agents

 There is no difference between two different optimal allocations

≥



Further Observations for Fairness

Let be an optimal allocation

Let be an allocation

 Optimal allocations are always preferred by ALL agents

 There is no difference between two different optimal allocations

≥

Fairness



Other Solution Concepts?
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The excess is a measure of the dissatisfaction of S



Other Solution Concepts?

How fairness/stability can be measured?

The excess is a measure of the dissatisfaction of S



Excess…

How fairness/stability can be measured?

The excess is a measure of the dissatisfaction of S



…and the Nucleolus

Arrange excess values in non-increasing order
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…and the Nucleolus

Arrange excess values in non-increasing order



…and the Nucleolus

Arrange excess values in non-increasing order

[Schmeidler]
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Complexity Issues

For many classes of «compact games» (e.g., graph games), 

the Shapley-value can be efficiently calculated

Here, the problem emerges to be #P-complete
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Here, the problem emerges to be #P-complete

#P is the class the class of all functions that can be computed by counting 

Turing machines in polynomial time.

A counting Turing machine is a standard nondeterministic Turing machine 

with an auxiliary output device that prints in binary notation the number of 

accepting computations induced by the input.

Prototypical problem: to count the number of truth variable assignments 

that satisfy a Boolean formula.



Complexity Issues

For many classes of «compact games» (e.g., graph games), 

the Shapley-value can be efficiently calculated

Here, the problem emerges to be #P-complete

Reduction from the problem of counting the number of perfect 
matchings in certain bipartite graphs [Valiant, 1979]

#P is the class the class of all functions that can be computed by counting 

Turing machines in polynomial time.

A counting Turing machine is a standard nondeterministic Turing machine 

with an auxiliary output device that prints in binary notation the number of 

accepting computations induced by the input.

Prototypical problem: to count the number of truth variable assignments 

that satisfy a Boolean formula.



Complexity Issues

#P-complete

However…



Probabilistic Computation

#P-complete

However…

Always Efficient and Budget Balanced

All other properties in expectation (with high probability)

Coupling of the algorithm with a sampling strategy for the 

coalitions by [Liben-Nowell,Sharp, Wexler, Woods; 2012]



Probabilistic Computation

Coupling of the algorithm with a sampling strategy for the 

coalitions by [Liben-Nowell,Sharp, Wexler, Woods; 2012]

Use sampling, rather than exaustive search.



Back to Exact Computation: Islands of Tractability

Can we find classes of instances for 

«allocation games» over which the Shapley

value can be efficiently computed? 



Back to Exact Computation: Islands of Tractability

Can we find classes of instances for 

«allocation games» over which the Shapley

value can be efficiently computed? 

Utility functions

Values taken from specific domains

For instance, use k values at most #P-complete, even for k=2

[G., Lupia and Scarcello;  2015]



Back to Exact Computation: Islands of Tractability

Can we find classes of instances for 

«allocation games» over which the Shapley

value can be efficiently computed? 

Utility functions

Values taken from specific domains

For instance, use k values at most

Structural restrictions…

#P-complete, even for k=2



Bounded Sharing Degree

Sharing degree

Maximum number of agents competing for the same good

Sharing degree = 2



Bounded Sharing Degree

Sharing degree

Maximum number of agents competing for the same good

Sharing degree = 2

The Shapley value can be computed in polynomial

time whenever the sharing degree is 2 at most.
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Bounded Interactions

Interaction graph

There is an edge between any pair of agents competing for 
the same good



Bounded Interactions

Interaction graph

There is an edge between any pair of agents competing for 
the same good

The Shapley value can be computed in polynomial

time whenever the interaction graph is a tree.

or, more generally, if it has bounded treewidth
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Tree Decompositions [Robertson & Seymour ‘86]

• Every edge realized in some bag

• Connectedness condition



Connectedness condition for h

ah

ahq
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hkl
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tw(acyclic graph)=1

tw(cycle) = 2

tw(G+v)  tw(G)+1

tw(G+e)  tw(G)+1

tw(Kn) = n-1  

tw is fixed-parameter tractable (parameter: treewidth)

Properties of Treewidth



Bounded Interactions

Interaction graph

There is an edge between any pair of agents competing for 
the same good

The Shapley value can be computed in polynomial

time whenever the interaction graph is a tree.

or, more generally, if it has bounded treewidth



Proof Idea: Ingredient 1

list the values in increasing order: w1,…,wm

, where

is the number of coalitions such that and 
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 restricted w.r.t. 



Proof Idea: Ingredient 2

is the number of coalitions such that and 

agent i

interaction graph

 restricted w.r.t. 

there is an allocation in the scenario induced over          where each

agent gets a good with value at least



Proof Idea: Ingredient 2

Keep only goods with the desired value

Focus on the induced scenario

The problem reduces to counting the number of     

coalitions with size h for which each agent can get a good

is the number of coalitions such that and 

there is an allocation in the scenario induced over          where each

agent gets a good with value at least



Proof Idea: Ingredient 3

The problem reduces to counting the number of     

coalitions with size h for which each agent can get a good



CSPs: Informal Definition

Variables:

A, B, C,  D,  and E

Domain:

RGB = {red, green, blue}

Constraints:

AB, AC,A  E, A  D, B  C, C  D, D  E

E

D A

C
B

E

D A

C
B



CSPs: Informal Definition

 Variables:

 A, B, C,  D,  and E

 Domain:

 D(A) = D(B) = D(C) = D(D) = D(E) = {red, green, blue}

 Constraints:

 AB;   AC;   A  E;   A  D;  B  C;  C  D;  D  E

E

D A

C

B
primal graph



Example Encoding



A              B             C

 Variables:

 Agent A,  agent B, and agent C    +

 Domain:

 D(A) = 

 D(B) = 

 D(C) = 

 Constraints:

 AB;     BC;    X=      if, and only if, INX=false

variables INA, INB, INC

boolean:  {true, false} 

Example Encoding



A              B             C

INA= INB = true 

INC = false

The problem reduces to counting the number of  coalitions

with size h for which each agent can get a good

Example Encoding



Proof Idea: Ingredient 3

The problem reduces to counting the number of     

coalitions with size h for which each agent can get a good



Proof Idea: Ingredient 3

The problem reduces to counting the number of     

coalitions with size h for which each agent can get a good

Decision problems

Computation Problems

Counting?

in «Tractability: Practical Approaches to hard Problems»

[Gottlob, Greco, Scarcello, 2013]
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Decision problems

Computation Problems

Counting?

 Solutions projected over a set W of 
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For instance, we cannot use a variable to denote the allocation for an agent, 

since its domain would be unbounded!

Usually,

Build the CSP

Compute a decomposition

Use structural tractability results

Here

Compute a decomposition

Build the CSP based on the 
decomposition

Recompute the decomposition

Use structural tractability results



Proof Idea: Ingredient 3

For instance, we cannot use a variable to denote the allocation for an agent, 

since its domain would be unbounded!

(variable associated with) agent i

(variable associated with) good g

auxiliary variables encoding the roadmaps to reach the goods



Proof Idea: Ingredient 3

For instance, we cannot use a variable to denote the allocation for an agent, 

since its domain would be unbounded!

(variable associated with) agent i

(variable associated with) good g

auxiliary variables encoding the roadmaps to reach the goods

W.l.o.g. the tree is binary.

Hence, a few «road signs» suffices



For references, see the bibliography of Mechanisms for Fair Allocation Problems [G. and Scarcello; JAIR 2014]


