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Introduction – General Aspects 

What are typical fair division problems? 

cost/surplus sharing 

land division cake cutting 

dividing sets of items 
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Introduction         

Most of the fair division models are built on answers to the following 
questions: 

 
n  What is to be divided? 

¨  costs, cakes, indivisible goods, etc. 
¨  possible restriction, e.g. in form of network structures, etc. 

n  What do agents’ preferences look like? 
¨  depends on the information acceptable in the division process 
¨  claims, rankings of items, cardinal value functions, etc. 

n  How are we dividing? What do we want to achieve? 
¨  define rules of a fair division procedure 
¨  what properties do such procedures satisfy 

n  used to define fairness 
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Indivisible Goods    

 Here we consider the problem of fairly dividing a set of indivisible 
items between two (or more) players. 

ANN BOB 

Examples: 
q  divorce settlement 
q  inheritance problems  
q  allocations of tasks to workers/machines 
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Outlook         

n  In this presentation the focus will be on 
¨  practical protocols/procedures/algorithms 
¨  fairness properties 

¨  hence we are not only concerned with the actual allocation by 
(possibly/hopefully) a benevolent dictator 

n  elicitation process might be difficult/expensive 
n  agents might be reluctant to accept a solution out of a “black box” 

¨  but with the design of practical procedures 
n  what can actually be achieved by such a procedure? 
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Formal Framework    

n  Assume set    of p items ranked by the players  
n                     as player i’s strict preference over  

¨  ordinal vs. cardinal 
n    denotes the set of all subsets of  
n  π(i) as i’s bundle or share 
n      as i’s preference over 
 
n  Example:  

allocation e.g. π(A) = {1,3}; π(B) = {2,4} 
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Ranking Sets of Items       
  

n  But how to compare different sets of items when only a linear order over 
the set of items is given? 

(1)  is {1,2} better for A than {3,4}? 
(2)  is {1,3} better for A than {2,4}? 
(3)  is {1,4} better for A than {2,3}? 

n  (1) and (2) seem plausible 
¨  pairwise dominance 

n  various axiomatic approaches to justify (3) and other comparisons 
n  Barbera, Bossert & Pattanaik (2004) 
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Ranking Sets of Items       
  

n  Two simple axioms: 
n  Simple Dominance 
 

n  Independence 
 

n  Result (Bossert, Pattanaik and Xu, 2000): 
 

¨  By adding further axioms, certain lexicographic and/or max and min based 
preferences on set of items can be characterized. 
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Ranking Sets of Items    

n  or we could request more information from the agents 
¨  cardinal approach 

n  wi(x) as the value attached to item x by player i 
n  wi(S) = Σx2S wi(x) 

¨  additive preferences 
n  what would be the ordinal counterpart of this property? 

n  separability 
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Ranking Sets of Items    

Example 
n  x1 = voucher for flight to Grenoble 
n  x2 = voucher for the summer school 
n  x3 = camera 
n  if my preference is x1 > x2 > x3 then separability implies that I 

prefer {x1,x2} to {x1,x3} 
¨  seems reasonable 

n  now what if x2 = train ticket to Grenoble 

n  complementarity 
¨  flight and summer school are complements 

n  substitutability 
¨  flight and train are substitutes 

n  hence additivity/separability implies no synergies 
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Envy-freeness, Efficiency, Equitability  
       

n  envy-freeness (EF) 
¨  an allocation (π(A),π(B)) is EF if for all i 2 N, π(i)         π(j), for all j 2 N 
¨  this is the case for allocation (13,24), i.e., π(A) = {1,3} and π(B) = {2,4} 

n  efficiency (PO) 
¨  an allocation (π(A),π(B)) is efficient if there exists no other allocation 

(π’(A),π’(B))  such that π’(i)      π(i) for all i and π’(j)       π(j) for some j.  

n  equitability 
¨  an allocation (π(A),π(B)) is equitable if wA(π(A)) = wB(π(B)). 
¨  uses cardinal information 

n  How to decide which allocation to choose or which algorithm to use? 
¨  normative/axiomatic approach 
¨  what is it that we want to achieve? 
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Envy-freeness, Efficiency, Equitability  
       

n  See immediately that most of the standard fairness axioms will not 
necessarily hold in case of indivisible items 

ANN BOB 

n  But let us try to find out what certain procedures are able to achieve 
when we use certain assumptions. 
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Adjusted Winner Procedure      
   

n  adjusted winner procedure (Brams & Taylor, 1996) 
¨  one item may have to be divided 
¨  assign (100) points to items 
¨  transfer items to equalize sum of points 

© W.H. Freeman and Company 
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Adjusted Winner Procedure      
   

n  Example 

step 1 

n  Step 2: A à {2,3}; B à {1,4,5} 
¨  total points: A à 60; B à 70 

n  Steps 3/4: point ratio B/A (as B has the higher total so far) 

¨  consider the item of B with lowest ratio to be transferred first 
n  try to equalize points 

transfer 2/9 of item 5 to A 



15 

Adjusted Winner Procedure      
   

Theorem: The adjusted winner procedure leads to an allocation which is  
•  envy-free 
•  efficient (Pareto optimal) 
•  equitable 

n  but what if cardinal information is not available and all items are 
definitely indivisible? 
¨  Adjusted winner can not be used 
¨  no simple procedure will guarantee those fairness criteria 

n  Alternatives? 
¨  incomplete allocations 
¨  different fairness criteria 



16 

Maximin shares         

n  maximin shares (Procaccia and Wang, 2014) 
¨  cut and choose as convincing and simple method in cake cutting 
¨  but leads to problems in the division of indivisible items with cardinal valuations 
¨  no guarantee of 1/n – share (proportionality) 
¨  maximin share as what a player can guarantee herself by dividing the items in n 

piles 

Theorem: There exists an allocation (π(A),π(B),…,π(N)) such that ui(π(i)) ≥ 
2/3 MMSi 

¨  can be found in polynomial time 
¨  www.spliddit.org 

¨  if A first: A offers split (34,125) with values 50-50 for A 
¨  B chooses 34 with value 55 for B 

¨  if B first: B has various options, e.g. (14,235) with 45-55 
¨  A chooses 235 with value 80 for A 
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Minimizing Envy       

n  Lipton et al. (2014) 
¨  as envy can not be eliminated in general their focus is on minimizing envy 
¨  minimum envy 

n  maxi,j{0, wi(π(j)) – wi(π(i))} 
¨  minimum envy ratio 

n    
 

n  They show that in general it is very difficult to find the exact allocation 
based on those envy-concepts. 
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Approximate Fair Allocations      
  

n  Graham’s algorithm (1969) 
¨  based on additive utilities 
¨  all players have the same utility function 
¨  equivalent to scheduling problem for identical machines 

n  sort the items in decreasing order of values and allocate them one by one 
in that order 

n  allocate the next item to the player whose current value of the bundle is 
lowest 

Theorem: Graham’s algorithm achieves an approximation factor of 1.4 for 
the envy-ratio problem, i.e., is at most 40% above the optimal envy-ratio for 
any such fair division problem. 
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Brams & Taylor Procedure (1999)   
      

n  now we turn to procedures using only ordinal information 
n  Consider the following simple procedure (BT-procedure): 

¨  ask players to name the item they want to have next 
¨  if they name different items allocate them 
¨  if they name the same item put it into a contested pile 

n  Problem: might lead only to partial allocation 

n  but does it satisfy previous desirable properties? 
¨  envy-freeness 
¨  efficiency 
¨  equitability 
¨  new property: completeness 
¨  new property: maximin Allocation:  

π(A) = {1}; π(B) = {2}; 
CP = {3,4} 
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Envy-freeness         

n  previous definition of envy-freeness 
¨  an allocation (π(A),π(B)) is EF if for all i 2 N, π(i)         π(j), for all j 2 N 
¨  difficult to apply without detailed ranking information over sets of items 

n  use a stronger definition 
¨  as we use no information other than the players’ rankings over items 

An allocation (π(A),π(B)) is EF iff there exist an injection gA: π(A) → π(B) 
and an injection gB: π(B) → π(A) such that for each x 2 π(A), x ≻A gA(x) and 
for each x 2 π(B), x ≻B gB(x). 

¨  hence we have EF if there is pairwise dominance (Bouveret, Endriss and Lang 
(2010)) 

¨  implies that the allocation must assign sets of items of equal size 
¨  possible and necessary envy-freeness 
¨  in above example: (13,24) is necessarily EF whereas (14,23) is possibly EF 
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Completeness         

n  when can we be sure that a complete EF allocation (π(A),π(B)) does exist, 
i.e., all items can be allocated in an envy-free way? 

Condition C(k): A set consisting of i’s k-most preferred items is equal to the 
set consisting of j’s most preferred items. 

¨  only concerned with equality of sets not with their rankings 
¨  it will be important whether this condition holds for odd k 

Condition D: Condition C(k) fails for all odd values of k ≤ p. 

k=1: {1} vs {2} 
k=3: {1,2,3} vs {2,4,6} 
k=5: {1,2,3,4,5} vs {2,4,6,1,3} 



Maximin  

Depth of complete allocations 
The depth of any complete allocation is the rank of the least preferred 

item assigned to either player. 

(π(A),π(B)) = (1347,8625) => depth 8 
(π(A),π(B)) = (1456,8723) => depth 6 

A B
1 8
2 7
3 6
4 1
5 2
6 3
7 4
8 5

1

maximin depth: least integer f such that every item 
is ranked fth or higher => f = 5 

Lemma: Any complete allocation has a depth of at least f. 

one fairness condition could be to maximize the lowest ranked item any 
player receives in the allocation 
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Singles - Doubles 

Let f < n. An item is called single if it is a top f item for only one player. It 
is called double if it is a top f item for both players. 

singles: {3,4,5} for A; {6,7,8} for B 
doubles: {1,2}  

A B
1 8
2 7
3 6
4 1
5 2
6 3
7 4
8 5

1

it follows that a player’s top f items must 
include p – f singles and 2f – p doubles 

singles can now be used to simplify the test for complete EF allocations! 
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Condition DS 

Condition C(k): A set consisting of i’s k-most preferred items is equal to 
the set consisting of j’s most preferred items. 

Condition DS: Condition C(k) fails for all odd values of k < s, where s is the 
rank where the first single appears in either player’s ranking. 

A B
1 8
2 7
3 6
4 1
5 2
6 3
7 4
8 5

1

* k=1: {1} vs {8} 
* k=3: {1,2,3} vs {8,7,6} 
* singles: {3,4,5,6,7,8} 
* the first single that appears is item 8 in ranking B; s=1  
* condition DS is satisfied 
* can be used to determine the existence of complete EF-MX 

allocations 
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Definitions/Results 

Theorem (Brams, Kilgour & Klamler, 2015): Assume A and B strictly rank p 
items, where p is even. Then the following are equivalent: 
 
1.  Condition D holds. 
2.  Condition DS holds. 
3.  There exists a complete EF-MX allocation. 

Corollary: If A’s and B’s rankings of an even number of items admit a 
complete EF allocation, then they admit a complete EF-MX allocation. 
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Singles-Doubles-Algorithm 

(assume condition D being satisfied)  
 
SD-Algorithm 
 
Input: A’s and B’s rankings of p > 0 items, where p is even. 
Output: A complete MX-EF allocation. 
1.  Determine f. 
2.  Identify A’s singles, and assign them to A. Identify B’s singles, and 

assign them to B. Stop if all items have been allocated. 
3.  Assign doubles using the following iterative procedure: identify each 

player’s most preferred unassigned double. If they are different, 
assign them accordingly. If they are the same, identify the player who 
can be assigned its second-most preferred unassigned double 
guaranteeing EF, and assign the items accordingly (multiple outcomes 
possible). Repeat until all doubles are assigned. 

EF identified by checking for any depth k whether 
26 



Example 

Consider the following preferences: 
A B
1 8
2 7
3 6
4 1
5 2
6 3
7 4
8 5

1

* there are six singles, {3,4,5} for A and {6,7,8} for B 
* the two doubles are {1,2} 
* as they are ranked the same we have to identify whether we 

can assign item 2 to one of the players and still satisfy EF; 
possible for player B 
* final allocation: {1,3,4,5} to A and {2,6,7,8} to B 
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Iterated SD-algorithm 

Do not use the singles-assignment stage once but repeat it as long as possible. 

* assign singles 9 to A and 0 to B 

1 Distance-Based Aggregation Theory 3

Axiom 3 Let X = S [ T with S \ T = ; and aR

i

b for all a 2 S, b 2 T

and i 2 {1, 2}. If R1 and R2 fully agree upon S, written R1|S = R2|S, then

d(R1, R2) = d(R1|T,R2|T ). The analogous needs to hold if R1|T = R2|T .

Finally, a unit of measurement is chosen.

Axiom 4 If R1 6= R2, then d(R1, R2) � 1, i.e. the minimal positive distance

is 1.

Kemeny [29] considered the following distance function d

k

between pairs
of preferences.

Definition 2. A distance function d : R⇥R ! <+ is called Kemeny distance

if for all R1, R2, d(R1, R2) = |(R1\R2) [ (R2\R1)|.

This distance function d

K

is hence the cardinality of the symmetric differ-
ence between R1 and R2. Differently speaking, it counts (twice) the number
of inversions of pairs in the respective preferences R1 and R2.2 This can be
seen in the following example:

Example 1. Let X = {a, b, c}. The individual preferences are stated in the
following table 1.1 where alternatives are ranked from more preferred (top)
to less preferred (bottom).

A B

1 8
2 7
3 6
4 3
5 2
6 1
7 5
8 4
9 0
0 9

Table 1.1 Rankings for 3 alternatives.

Preference R1 differs from preference R2 by a difference in the relative
ranking between alternatives a and b, i.e. a full inversion between those two
alternatives leads from one preference to the other. Hence, the symmetric
difference between R1 and R2 is (R1\R2)[ (R2\R1) = {(a, b), (b, a)}, leading
to a Kemeny distance of d

K

(R1, R2) = 2. Moving from R1 to R3, every single
pair of alternatives needs to be fully inversed. As there are 3 such pairs,
d

K

(R1, R3) = 6. As R3 is the exact opposite of R1, the distance between

2 Interpreting the Kemeny distance via number of inversions is slightly problematic when
considering weak orders, i.e. allowing for indifferences as in that case full inversions might
not occur.

1 Distance-Based Aggregation Theory 3

Axiom 3 Let X = S [ T with S \ T = ; and aR

i

b for all a 2 S, b 2 T

and i 2 {1, 2}. If R1 and R2 fully agree upon S, written R1|S = R2|S, then

d(R1, R2) = d(R1|T,R2|T ). The analogous needs to hold if R1|T = R2|T .

Finally, a unit of measurement is chosen.

Axiom 4 If R1 6= R2, then d(R1, R2) � 1, i.e. the minimal positive distance

is 1.

Kemeny [29] considered the following distance function d

k

between pairs
of preferences.

Definition 2. A distance function d : R⇥R ! <+ is called Kemeny distance

if for all R1, R2, d(R1, R2) = |(R1\R2) [ (R2\R1)|.

This distance function d

K

is hence the cardinality of the symmetric differ-
ence between R1 and R2. Differently speaking, it counts (twice) the number
of inversions of pairs in the respective preferences R1 and R2.2 This can be
seen in the following example:

Example 1. Let X = {a, b, c}. The individual preferences are stated in the
following table 1.1 where alternatives are ranked from more preferred (top)
to less preferred (bottom).

A B

1 8
2 7
3 6
4 3
5 2
6 1
7 5
8 4

Table 1.1 Rankings for 3 alternatives.

Preference R1 differs from preference R2 by a difference in the relative
ranking between alternatives a and b, i.e. a full inversion between those two
alternatives leads from one preference to the other. Hence, the symmetric
difference between R1 and R2 is (R1\R2)[ (R2\R1) = {(a, b), (b, a)}, leading
to a Kemeny distance of d

K

(R1, R2) = 2. Moving from R1 to R3, every single
pair of alternatives needs to be fully inversed. As there are 3 such pairs,
d

K

(R1, R3) = 6. As R3 is the exact opposite of R1, the distance between
those two preferences is also the maximal distance between two preferences
over 3 alternatives.
2 Interpreting the Kemeny distance via number of inversions is slightly problematic when
considering weak orders, i.e. allowing for indifferences as in that case full inversions might
not occur.

* assign singles {1,5,4} to A and {6,7,8} to B 

1 Distance-Based Aggregation Theory 3

Axiom 3 Let X = S [ T with S \ T = ; and aR

i

b for all a 2 S, b 2 T

and i 2 {1, 2}. If R1 and R2 fully agree upon S, written R1|S = R2|S, then

d(R1, R2) = d(R1|T,R2|T ). The analogous needs to hold if R1|T = R2|T .

Finally, a unit of measurement is chosen.

Axiom 4 If R1 6= R2, then d(R1, R2) � 1, i.e. the minimal positive distance

is 1.

Kemeny [29] considered the following distance function d

k

between pairs
of preferences.

Definition 2. A distance function d : R⇥R ! <+ is called Kemeny distance

if for all R1, R2, d(R1, R2) = |(R1\R2) [ (R2\R1)|.
This distance function d

K

is hence the cardinality of the symmetric differ-
ence between R1 and R2. Differently speaking, it counts (twice) the number
of inversions of pairs in the respective preferences R1 and R2.2 This can be
seen in the following example:

Example 1. Let X = {a, b, c}. The individual preferences are stated in the
following table 1.1 where alternatives are ranked from more preferred (top)
to less preferred (bottom).

A B

2 3
3 2

Table 1.1 Rankings for 3 alternatives.

Preference R1 differs from preference R2 by a difference in the relative
ranking between alternatives a and b, i.e. a full inversion between those two
alternatives leads from one preference to the other. Hence, the symmetric
difference between R1 and R2 is (R1\R2)[ (R2\R1) = {(a, b), (b, a)}, leading
to a Kemeny distance of d

K

(R1, R2) = 2. Moving from R1 to R3, every single
pair of alternatives needs to be fully inversed. As there are 3 such pairs,
d

K

(R1, R3) = 6. As R3 is the exact opposite of R1, the distance between
those two preferences is also the maximal distance between two preferences
over 3 alternatives.

The Kemeny distance is not only an intuitively plausible way to measure
distances between preferences: Interestingly (see Kemeny and Snell [30] for
a nice proof), the Kemeny distance d

K

is also the only distance function to
satisfy the above axioms.

Theorem 5. (Kemeny [29]) Distance function d is the Kemeny distance d

K

if and only if it satisfies axioms 1 to 4.

2 Interpreting the Kemeny distance via number of inversions is slightly problematic when
considering weak orders, i.e. allowing for indifferences as in that case full inversions might
not occur.

* assign singles 2 to A and 3 to B 

Final ISD allocation: (12459, 87630) 
SD-allocation: (12349,87650) 
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(I)SD-Algorithm 

The (I)SD-algorithm finds at least one PO allocation. 

The (I)SD-algorithm is vulnerable to manipulation by a player’s 
misrepresenting its sincere preference ranking. 

n  but: hardly any algorithm would be strategy-proof 
¨  dictator rule 
¨  constant rule 
¨  mechanism design 
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Sequential Procedures        

n  picking sequences (Bouveret and Lang, 2011) 
¨  use only partial elicitation of players’ preferences 
¨  define a sequence for the n players 
¨  e.g. for N = {A,B,C} and p = 5 a possible sequence is ABCCB. 

n  very simple to implement (even for many players) 
n  little information necessary 
n  very low complexity 

¨  (as usual our question is) what is the fairest sequence? 
n  full independence of preferences (impartial culture assumption) 
n  agents have additive utilities, where utilities are based on the same scoring 

function but rankings might be different 
n  arbitrator does not know the agents’ preferences but has probability 

distribution on possible profiles 
¨  goal is to maximize expected collective utility 

n  what is this? 
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Sequential Procedures        

n  utilitarianism 
¨  maximize sum of Borda scores 

n  egalitarianism 
¨  maximize the minimum Borda score of an agent 

egalitarian utilitarian 
ABBA ABAB 

ABABBA ABABAB 
ABBABAAB ABABABAB 

ABBAABABBA ABABABABAB 
ABABABABBABA ABABABABABAB 

n  comparisons w.r.t. envy based on Borda scores could also be made 
¨  e.g. for 6 items the sequence ABBABA creates (on average) slightly less 

instances of envy than the egalitarian optimum 

utilitarian: π(A) = {1,3,5} 
à BS = 9; π(B) = {2,4,6} 
à BS = 6 

egalitarian: π(A) = {1,3,6} 
à BS = 8; π(B) = {2,4,5} 
à BS = 7 
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Descending Demand Procedure      
   

n  descending demand procedure (Herreiner and Puppe, 2002) 
¨  players rank all their bundles 

n  only monotonicity assumption used 
¨  descend in their rankings until PO and set-maximin-optimal allocation 

is found 
n  idea of fallback bargaining (Brams and Kilgour, 2001) 

¨  does not guarantee EF but produces “balanced” allocations 
n  natural counterpart of egalitarian social welfare 

¨  but: is ranking all bundles realistic? 
n  10 items lead to 1023 non-empty sets to be ranked 
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Contested Piles       
n  now what if complete EF allocation is not possible according to previous 

procedures 
¨  items might be in a contested pile or unassigned 
¨  is there still hope for EF? 

n  what could we do with such items in the contested pile? 
n  before going in detail, consider the ultimatum game of dividing a single 

divisible good 

ANN BOB 

¨  in a first step Ann suggests a division of the dollar to Bob which he can accept 
(hence division implemented) or reject (no payoff to either player). 

n  what is the rational proposal by Ann? 
¨  now – in a second stage – allow Bob to undercut Ann’s proposal by 1 cent and 

implement the resulting division 
n  what will Ann do in the first stage given this additional step? 
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Contested Pile        
n  are we able to divide the items in a contested pile even if both players 

rankings of the items are the same? 
¨  as is the case e.g. for the items in contested pile of BT-procedure 
¨  conflict often occurs when items are ranked the same 

Is there a fair division procedure that leads to an envy-free division? 
(at least under certain restrictions) 
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Definitions    

n  Preference º on X satisfies responsiveness if for all S2X and all x2S 
and y2O\S  

Brief Article

The Author

October 16, 2014

1 First section

xRy ⇔ S ≻ S\{x} ∪ {y}

1.1 A subsection

P1 P2

a b
b c
c e
d d
e a
f f

≻1 ≻2

1

and 

Brief Article

The Author

October 16, 2014

1 First section

xRy ⇔ S ≻ S\{x} ∪ {y}
S ≻ S\{x}

1.1 A subsection

P1 P2

a b
b c
c e
d d
e a
f f

≻1 ≻2

1

{1,2,5} ≻ {2,3,5} 

n  Let S,T 2 X. T is said to be ordinally less than S, denoted by T ≤OL S, if 
there exists an injective function σT,S: T\S → S\T such that for all 
x2T\S, σT,S(x)Px.   
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Definitions    

n  S 2 X is a minimal bundle for player i if S ºi –S and, for any T ≤OL S, it 
holds that –T ≻i T  

n  Player i regards set S 2 X as worth at least 50 percent if S ºi –S  

è Hence, a player regards a subset S as a minimal bundle if 
S is worth at least 50 percent AND any subset T that is 
ordinally less than S is worth less than 50 percent. 

if {1,3,5} is a minimal bundle, then {1,4,5} must be worth 
less than 50% 

n  For any S 2 X, the split (S,-S) is envy-free if S ºA –S and -S ºB S 

n  An envy-free split of X, (S,-S), is trivial if S ~A –S and –S ~B S 
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Undercut Procedure    

Undercut Procedure (Brams, Kilgour and Klamler, 2012) 
n  Players state items, if different, assign them, if the same, put in CP 
n  Given the CP, players state their sets of minimal bundles (MBi) 
n  MBA ≠ MBB: randomly choose a player (say player A) and let her propose 

a minimal bundle S 2 MBA such that S ∉ MBB 
n  MBA = MBB: if there exists an S such that S, -S 2 MBi then S becomes 

the proposal; if no such minimal bundle exists, choose one at random as 
the proposal 

n  Given the proposal, the other player (say player B) can either 
n  accept the complement of the proposal, or 
n  reject and undercut, i.e., take a set which is ordinally less than the 

proposal in which case its complement is assigned to the other 
player 

n  for other contested pile procedures see Vetschera & Kilgour (2014) 
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Undercut Procedure    

u  assume {1,2} 2 MBA and {2,3,4,5} 2 MBB but not vice versa 
u  assume A makes the proposal 

n  A proposes {1,2} 
n  B can do the following 

n  accept: she gets {3,4,5}  
n  undercut: she takes {1,3} and A gets {2,4,5} 

n  B: {3,4,5} must be worth less than 50% as {2,3,4,5} 2 MBB 
n  B: {1,3} worth at least 50% as {2,4,5} ordinally less than {2,3,4,5} 
n  A: {2,4,5} worth at least 50% as {1,2} 2 MBA and therefore {1,3} less 

than 50% which makes the complement {2,4,5} worth more than 50% 
n  allocation ({2,4,5},{1,3}) is envy-free 
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Undercut Procedure - Result       

 Theorem   
 There is a nontrivial envy-free split of the contested pile if and 
only if one player has a minimal bundle that is not a minimal bundle 
of the other player. If so, UP implements an envy-free split. 

 
u  Different sets of MBs necessary, otherwise more information 

about players’ preferences required. 
u  Definition (extension monotonicity): 

 Proposition 
 Given responsive and extension monotonic preferences of the 
players and an envy-free division of the contested pile, the final 
division of O under UP and any previous procedure is envy-free. 

Brief Article

The Author

October 17, 2014

1 First section

xRy ⇔ S ≻ S\{x} ∪ {y}
S ≻ S\{x}

1.1 A subsection

P1 P2

a b
b c
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f f
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d
e

df
Preference ! on X satisfies extension monotonicity if for all S, T ∈ X , all preferences P ,
and all x, y ∈ X\(S ∪ T ), S ! T and xPy imply S ∪ {x} ≻ T ∪ {y}.

df
A set S is feasible if there exists a responsive preference ! such that S ≻ −S

1
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Feasible Subsets         

n  recall that items in the contested pile are ranked the same by the 
players 

n  Question: Can we identify ALL possible envy-free splits of 
items when rankings are the same? 

n  Definition (feasibility): 

Brief Article

The Author

October 17, 2014

1 First section

xRy ⇔ S ≻ S\{x} ∪ {y}
S ≻ S\{x}

1.1 A subsection

P1 P2

a b
b c
c e
d d
e a
f f

P
a
b
c
d
e

df
Preference ! on X satisfies extension monotonicity if for all S, T ∈ X , all preferences P ,
and all x, y ∈ X\(S ∪ T ), S ! T and xPy imply S ∪ {x} ≻ T ∪ {y}.

df
A set S is feasible if there exists a responsive preference ! such that S ≻ −S

1
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Feasible Subsets         

n  Example: O = {1,2,3,4,5}.  
¨  {1,2}, {3,4,5} are feasible sets 
¨  but not {4,5} 

 
n  We can guarantee an envy-free split if both, a subset and its 

complement are feasible. 
 
n  Some feasible sets may be part of envy-free splits, but others are 

not because their complements are not feasible.  
 
  
p=1 è no envy-free split possible 
p=2 è no envy-free split possible (exception indifference) 
p=3 è the only possible envy-free split is 1/23 
p=4 è the possible splits are 1/234 and 14/23 
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Feasible Subsets         

n  Let for any positive integer k, Ok = {1,2,…,k}. The following theorem 
gives a necessary and sufficient condition for S being feasible. 

n  Theorem: 

Example: S={2,3} 
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Feasible Subsets         

p 1 2 3 4 5 6 7 8 9 
EF-splits 0 0 1 2 6 12 29 58 130 

h(p) =

2 p-1 −
p

(p-1)/2

"

#
$
$

%

&
'
'       if p is odd 

2 p-1 −
p
p/2

"

#
$
$

%

&
'
'             if p is even.

(

)

*
*
*

+

*
*
*

n  Brams and Fishburn (2000) derived the following formula for 
h(p), the number of possible envy-free splits (S,-S) of a CP with 
p items: 

n  This number increases exponentially in p 
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Properties of UP - manipulability     

Proposition 
 A player’s (say A) lexicographic maximin strategy under UP is to name 
all his or her minimal bundles. Whatever B’s strategy, A’s worst outcome 
(in expectation) is never lower than her worst outcome for any other 
strategy, and in case that MBA≠MBB, A cannot receive less than 50 
percent from CP by proposing a minimal bundle, whereas proposing a non-
minimal bundle may lead to her receiving less that 50 percent. 

Example:  
u  CP={1,2,3,4,5} 
u  MBA={1,2}; MB’A={1,2,5}; MBB={2,3,4,5} 
 
Ø  A’s offer of a split ({1,2,5},{3,4}) will be undercut by B’s counterproposal 

of ({3,4,5},{1,2}).  
Ø  As {1,2} was in MBA, {3,4,5} must be less than 50 percent to A.  



45 

Properties of UP - efficiency    
      

n  Can envy-free splits under UP fail to be Pareto-optimal? 
¨  if we assume cardinal information  

Items: 1 2 3 4 5 6 
A’s 

utility: 27 26 15 13 11 8 
B’s 

utility: 30 19 15 13 12 11 

n  A’s minimal bundles: 
¨  {1,2} (value 53), {1,3,6} (value 50), {2,4,5} (value 50) 

n  B’s minimal bundles: 
¨  {1,5,6} (value 53), {3,4,5,6} (value 51) 

n  If A is proposer: split ({1,2},{3,4,5,6}) (value 53:51) 
n  Pareto-preferred split ({2,3,4},{1,5,6}) (value 54:53) 
n  Envy-freeness comes at an efficiency cost. 
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Properties of UP – size of CP 

Expected size of CP 

n  p items, A’s strict ranking is 1>2>…>p 
n  B’s p! possible rankings are assumed to be equiprobable  

 (compare to Impartial Culture assumption in voting) 
n  for p=1, this single item must be in the CP, hence c(1)=1 
n  for p=2, B’s preferences are either 1PB2 or 2PB1 each with 

probability 0.5. If it is 2PB1, A gets item 1 and B item 2, if it is 1PB2 
it is the same as A’s ranking and both items go into the contested 
pile. The expected number therefore is c(2)=1. 
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Properties of UP – size of CP  

k=0 c(1) c(2) 1 
k=1 c(3) c(4) 1.33 
k=2 c(5) c(6) 1.533 
k=3 c(7) c(8) 1.676 
k=4 c(9) c(10) 1.787 
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